If it's not what You are looking for type in the equation solver your own equation and let us solve it.
4.9t^2+12t-75=0
a = 4.9; b = 12; c = -75;
Δ = b2-4ac
Δ = 122-4·4.9·(-75)
Δ = 1614
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(12)-\sqrt{1614}}{2*4.9}=\frac{-12-\sqrt{1614}}{9.8} $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(12)+\sqrt{1614}}{2*4.9}=\frac{-12+\sqrt{1614}}{9.8} $
| 14=-2(-2t-1) | | 5(p+6)=-5+5(2+2p) | | 4n^2-76n+360=0 | | (x)-19=-9 | | (x)-19=9 | | 15x-2=10x | | 2+,25f=10-2,75f | | 8g−10=9g | | 8x+32-56x-21=53 | | x2+11+28=0 | | 38+3p=-4(-4p-3) | | 2(0-3y)=25 | | p-1=5p-6+3p-2 | | -q=-8−5q | | (x+10)=(3x-26) | | 4x−6=2(2x+3) | | 11x-5(2x+3)=-12 | | -6.96=2+v/7 | | -6+2u=4 | | 180=16n(10-n) | | -7(1-6x)=38-3x | | -13=8+y/3 | | 2f=2.8 | | 16n^2-160n+180=0 | | -5(x+1)=2x+8(-2x-4) | | 86+2x=206 | | 49+5=3(6x-2x) | | 2=2q-6 | | 8t^2+11t-164=0 | | y3(y-4)=15 | | 8(t+3)-7(t+2)=11 | | 4x+7=53-6x |